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Abstract--Based on a continuum description, the effect of capillary heterogeneity, induced by variation in 
permeability, on the steady state, countercurrent, vapor liquid flow in porous media is analyzed. It is 
shown that the heterogeneity acts as a body force, that may enhance or diminish gravity effects on heat 
pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes 
are also formulated. It is shown that the "infinite' two-phase zone may terminate by a substantial change 
in the permeability somewhere in the medium. The two possible sequences, liquid liquid dominated~lry, 
or liquid vapor dominated~:lry find applications in geothermal systems. Finally. it is shown that although 
weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise 

to significant capillary effects. 

1. I N T R O D U C T I O N  

COUNTERCURRENT vapor-l iquid flow in porous media 
has been the subject of many recent studies due to its 
relevance to geothermal processes, boiling, thermal 
methods for oil recovery and nuclear waste disposal 
[1-5]. Of particular interest are steady state heat pipes 
driven by gravity_ Current  theory dictates that in 
homogeneous systems an infiniteO, long two-phase 
zone of constant saturation develops if the heating rate 
is low enough (below a critical value). Two such states 
are predicted, one corresponding to low liquid satu- 
ration (vapor dominated, VD) and one correspond- 
ing to high liquid saturation (liquid dominated, LD)_ 
In a recent note [6], we conjectured that the particular 
solution is selected based on the past history of the 
system_ For instance, in boiling (bottom heating) it is 
the LD branch that is followed. While, in con- 
densation of a superheated vapor (top cooling), it is 
the VD branch that is selected [7]. In either case, 
however, capillarity is necessary to connect the con- 
stant saturation profiles to the subcooled or dry 
regions, respectively. 

In practice, of  course, all systems are finite and 
heterogeneous_ The two-phase zone must terminate 
at a finite location, where the 'infinite' extent results 
of the homogeneous case break down. Terminat ion 
of the two-phase zone must be obtained by smoothly 
merging the two-phase region with either a subcooled 
liquid or a dry region, in the two cases, respectively 
(otherwise, non-zero vapor and liquid fluxes would 
exist at the impermeable boundary [6])_ It has been 
tacitly implied in previous studies that this can be 
accomplished with a sharp permeability change. Anal-  
ogous considerations apply to the gravitational stabil- 

1 Author to whom all correspondence should be addressed. 

ity of vapor-l iquid counterflow, when a vapor-rich 
region underlies a subcooled liquid layer [8, 9]. The 
present consensus is that unconditional stability is 
possible only if a permeability heterogeneity exists 
somewhere in the two-phase region. 

Heat pipe instability in the very different context of 
the sensitivity of steady, 1-D profiles to the boundary 
conditions, has also been considered. It was suggested 
[10] that, under certain boundary conditions, a VD 
solution is unconditionally 'unstable '  and must revert 
to a 'stable' LD configuration, or vice versa, if the 
boundary conditions are reversed. While not immedi- 
ately apparent, this problem is actually related to 
effects of heterogeneity. Indeed, for non-condensing 
fluid flows in porous media, boundary conditions can 
be successfully treated as effects of heterogeneity, 
where the change in permeability is abrupt  and very 
large [11]. Analogous considerations apply for the 
countercurrent flow case, as discussed below. 

Effects of heterogeneity on vapor-l iquid concurrent 
flow were studied in ref. [12], where previous work on 
the steady state, two-phase flow of non-condensing 
fluids [11] was extended. Heterogeneity effects on 
countercurrent vapor-liquid flows, however, have not 
been systematically addressed (see also ref. [13]) and 
they are currently poorly understood. As briefly 
described above, cases in point are the issues of the 
termination of the 'infinite' two-phase zone, of the 
gravitational instability and of the sensitivity to 
boundary conditions. This paper aims at resolving 
some of these issues. Based on the key assumption 
that capillarity and permeability are interrelated, we 
theoretically investigate various effects of hetero- 
geneity. We find that in 1-D vapor-l iquid counterflow, 
permeability (capillary) heterogeneity acts much like a 
body force (e.g. gravity), with the additional property 
that it is spatially varying. Such heterogeneity may 
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heterogeneity gradient, d-c/d~ 
spatial extent of heterogeneity [m] 
gravitational acceleration [m s 2] 
Leverett function 
permeability [m 2] 
reference permeability [m~-] 

relative permeabilities 
latent heat [Jkg ~] 
characteristic length scale in (I 8) [m] 
molecular weight [kg kmol-~] 
Bond number  
pressure [Pal 
capillary pressure [Pal 
heat flux [W m -  2] 
gas constant [m ~ Pa K ~ mol ~] 
liquid saturation 

T temperature [K] 
x spatial coordinate [m]. 

Greek symbols 
[~ ratio of kinematic viscosities, vt/r~ 

rescaled spatial coordinate, ~/1 
0 angle of inclination 
2 thermal conductivity [W m ~ K -  ~] 
I~ dynamic viscosity [Pa s] 

dimensionless spatial coordinate, 
xx/kgApla 

p density [kg m -  3] 
o- surface tension [N m-~] 
r heterogeneity variable, x/(k/k*) 
~J dimensionless heat flux_ 

thus enhance or counterbalance gravity effects. 
depending on amplitude and variation_ 

The paper is organized as follows. We first consider 
the horizontal case, which allows for capillary effects 
only to be studied and for an exact solution to be 
developed. Then, we consider effects of gravity. Selec- 
tion rules are developed for a homogeneous heat pipe 
when the heat flux is below critical. Next, we address 
heterogeneous gravity heat pipes at conditions of both 
slow and fast permeability variation. In all cases, heat 
conduction is neglected. The description is based on 
a cont inuum formalism and employs the concepts 
of equilibrium, saturation-dependent only, capillary 
pressure and relative permeability. Whether this for- 
malism is adequate for rapidly varying permeabilities 
is not questioned. It is conceivable that, at least in the 
case of sharp heterogeneities, some of the results may 
need further support, e.g. from more detailed pore 
network-level analysis. 

2. FORMULATION 

2. I. Preliminaries 
The heterogeneous variable of interest to this work 

is permeability [1 1, 12]. As a result of  the Leverett J- 
function representation, the variable mostly affected 
in the present I-D counterflow is capillary pressure 

aJ(S) 
Pc -- (1) 

Although the dimensionless function J (as well as the 
relative permeabilities) may also be weakly varying 
with permeability, it is the dimensional x/k-depen- 
dence that controls the capillary variation (see also 
ref. [1 I] for a more detailed discussion)_ This de- 
coupling of saturation and permeability on the capil- 
lary pressure is the key to the present investigation. 

In heat pipes, the importance of conduction is 
expressed through the dimensionless group [7] 

KR,, = kL~M~.Pop,./pv2RTo. Typically, KR,, is large 
(equal to 5184 for the conditions in ref. [3]) and con- 
duction is negligible. Conduct ion must be retained, 
however, in systems with low k or high 2 values, 
although such eases may be of limited practical inter- 
est (but see ref. [6]). Conduct ion is also important  
in the geothermal systems of the type discussed by 
Schubert and Straus [14], where its inclusion is necess- 
ary in order to sustain the counterflow. Regardless of 
the application, however, the relevance of conduction 
to a study of capillary heterogeneity should be small. 

In its absence, saturation and temperature are 
decoupled from each other and the solution is ob- 
tained by simple means. Following ref. [7], a straight- 
forward manipulation of mass, momentum and energy 
balances yields the simple equation 

dS d~ (krl+flk~) +r- '  sin 0 (2) 
r J ' ~  - J ~  = 09 krlk~ 

Here r ~ x/(k/k*) is the heterogeneity variable which 
is spatially varying, k* denotes a constant  reference 
permeability and superscript ' indicates derivatives 
with respect to S. The notation follows ref_ [7] except 
for r, which here measures permeability rather than 
temperature. The dimensionless coordinate ¢ in- 
creases such that liquid velocity is positive, and vapor 
velocity and heat flux are negative, while the 
dimensionless heat flux ~o = Iql/~,./k*LvgAppv is nor- 
malized with a reference permeability. In this 
notation, therefore, different permeability regions 
have the same value of 09, but not the same critical 
values (see also below). The angle 0 is measured with 
respect to the horizontal in a counterclockwise sense 
(Fig. 1). 

Equation (2) must be generally solved numerically. 
Preliminary insight can be obtained by analytical solu- 
tion, which is possible for a special case in horizontal 
counterflow. This case also highlights important  
effects of capillary heterogeneity. 
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FIG. 1. Schematic of counterflow geometry. 

A. Horizontal countetflow. In a horizontal system 
(0 = 0) counterflow is driven by capillarity alone [5] 
and (2) yields 

dS (k~ + flk,.v) dr 
r J ' ~  = 09 k~,k~ + J ~  (3) 

It is instructive to compare (3) with the equation 
corresponding to a homogeneous gravity heat pipe 
(0 = 3rc/2, z = 1), which reads 

dS (kr~ + flkr~) 
J" ~ = 09 k~k~,, 1_ (4) 

Then, it becomes clear that capillary heterogeneity 
and gravity (second terms on the right-hand side of  
(3) and (2)) play similar roles. To explore this simi- 
larity, we consider the special case of  (3) where z is 
piecewise linear (Fig. 2) 

I 
' 1  ~ < 0  

r = .  a ~ + l  0 < ~ < d  (5) 

lZ+ ; d < 

where z+ - ad+ I. In the above, the spatial extent 

of the heterogeneity was denoted by d > 0, while a 
indicates the direction of  change ( a >  0 for an 
increase, a < 0 for a decrease of  T). 

In the homogeneous region, ~ < 0 or d < ,~, the 
solution is a continuously decreasing saturation 
obtained from (3) by setting ~ = 1_ Inside the hetero- 
geneity, 0 < ~ < d, the saturation satisfies 

krlkrvJ" dS d¢ 
(6) 

og(krl+flkn.)+k~lkr, aJ a ~ + l  

which can be readily integrated. Because of  quali- 
tatively different responses, two different cases will be 
considered. 

1. a > 0 (Fig. 2(a)). Here, the permeability is 
increasing and we obtain the straightforward result 

fs s k~lk~vJ" dS I 
,oJ(kruWflk,.,,)-..b~r.r,],..,_,.aj= a ln  (a~+ l) (7) 

where So is the saturation at 0. Because of  a > 0, the 
saturation decreases steadily also within the region of  
heterogeneity (Fig. 2(b)). The downstream value S~ 
satisfies 

fs s, krtk,~J" dS I 
,, og(kr~+flkr~)+krtkrvaJ = a ln~+ 

(8) 

provided that a solution to the latter exists. This 
requires 

fo I k~lkr.,(- J') dS 1 
w(krt + flk~v) + k~lk~aJ >/ a In "r+_ (9) 

Otherwise, single-phase flow conditions may develop 
inside the region of  heterogeneity. The particular satu- 
ration profile depends on the conditions imposed out- 
side this region_ If  the location of  the subcooled liquid 
boundary on the left or the dry boundary on the right 
is known, then integration proceeds from left to right 
or vice versa, and So, S~, etc. can be determined 
sequentially. The analogy of  this result to homo- 
geneous gravity heat pipes, is evident. The cor- 
responding problem is top heating (0 = rc/2) with 
vapor at the top and liquid at the bottom. Con- 
tinuously decreasing saturation profiles for this prob- 
lem with features qualitatively similar to the middle 

a > 0  

0 

(a) 

So 

$I 

d 0 d 

(b) 

FIG. 2. Horizontal counterflow with a > 0 : (a) -r (permeability) profile ; (b) saturation response. 
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Fl~. 3. The function ¢o(S) for capillary heterogeneity heat pipe (solid curve) and for gravity heat pipe 
(dashed curve). 

portion of Fig. 2(b) have been derived before in refs. 
[3, 7]. 

Of special interest is the case of a sharp dis- 
continuity (a >> I). Then, (8) yields 

J(So) - ~+ = k0 (1o) 

which is the condition of constant capillary pressure, 
implying a saturation jump across the discontinuity. 
This well-known static (no flow) condition also arises 
in the case of concurrent flow [I I]. In the latter, a 
build-up of the wetting phase saturation is necessary 
before a high permeability region is entered. 

2. a < 0. More interesting results arise in the case 
of a permeability decrease. Indeed, when a < 0, the 
denominator  in (6) may vanish, if co is small enough. 
For this to occur, the following equation must admit 
a real solution: 

kr~k,-v 
o) = - aJ kr I + flk~.¢ " (11) 

The right-hand side of (I I) is schematically plotted in 
Fig. 3 for a = - 1. We note that there exists a critical 
value 

{ Jk,,kr,., "~ 
O)cr.H = ( - -a)  maXs ~kkr,+flkr,~)-- (12) 

above which a real solution to (11) does not exist. The 
maximum is equal to 0.7, hence the critical value is 
proportional to the heterogeneity intensity ( - a ) .  
Equation (12) suggests the existence of a critical heat 
flux 

q¢r.H = 0 . 7 t r L v P v (  d~/k~  
u~ - d ~ x /  (13) 

the value of which increases with sharper changes 
in permeability. It follows that the saturation profile 
depends on the relative value of oJ : 

(i) For  co > O),:r.H, equation (11) has no solution. 
The effect of  heterogeneity is identical to the previous 
(a > 0), the solution is described as in the schematic 
of Fig. 2(b). 

(ii) For  oJ < OJcr.H , equation (11) has two roots, 
denoted by SvH and Sell (0 < SVH < SLH < 1), to one 
of which the solution is attracted. This is in very 
close analogy with the vapor-dominated or liquid- 
dominated regimes of homogeneous gravity heat 
pipes. In the latter, the two attractors Svc and SLG are 
solutions of 

o )  - - -  ( 1 4 )  

krl + flkrv 

which gives rise to a critical value OJcr,G (equal to 0.3063 
[3] for r = 1 (Fig. 3)). The corresponding critical heat 
flux is 

Lvpv 
qcr.c = 0.3 g k A p .  (15) 

/iv 

By a comparison of (15) with (13) it is evident that 
capillary heterogeneity a(d~ /k /dx )  plays a role identi- 
cal to gravity gkAp .  This similarity is further discussed 
later. As in gravity heat pipes, the saturation integral 
in (6) diverges at the two saturations SvH and SLH, 
thus nearly flat saturation profiles (either VD or LD) 
develop to .span the region of heterogeneity. Here, 
however, it is capillary heterogeneity, with the per- 
meability decreasing in the direction of liquid flow 
and not gravity, that sustains the constant  saturation 
profiles. The particular solution selected depends on 
the direction of integration as shown in the following. 

Consider, first, integration from the vapor side. 
This requires that superheated vapor exists some- 
where on the right so that we may integrate from 
the location S = 0 in the negative ~ direction. The 
saturation, S~, reached at ~ = d, dictates how the 
solution behaves inside the heterogeneity : 
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for a < 0 :  (a) S l < S v . ;  
(b) Sv. < S. < SL.; (C) SL. < $1; (d) SL. < So; (e) Sv .<  
So < SL,; (f) So < Sv.. Arrow denotes direction of inte- 

gralion. 

• If S~ < SVH, then dS/d~ < 0, and the saturation 
is rapidly attracted to the asymptotic value SvH (Fig_ 
4(a)). This is a vapor-dominated regime. Outside 
the heterogeneity, ¢ < 0, the integration is straight- 
forward 

fs r krlk~J' dS 
v,, ( k r , + f l k r v )  = o)~.  ( 1 6 )  

This solution applies until conditions of  subcooled 
liquid are reached (S = I). 

• IfSvH < S~ < SLH, then dS/d?= > 0, and the satu- 
ration becomes again asymptotic to SVH, except that 
the saturation is now decreasing in the short region 
before the asymptote is reached (Fig. 4(b))_ 

• Finally, ifSLH < S,, then dS/d~ < 0, but the satu- 
ration cannot  be attracted to a flat profile. The latter 
does not develop, instead the saturation is described 
by the previous equations (7)-(9), much like case A.1 
(Fig. 4(c)). 

Consider, next, integration from the liquid side. We 
assume that subcooled liquid exists somewhere on the 
left, such that we can proceed integrating from the 
location S = 1 in the positive direction. If  we denote 

by So the saturation at ¢ = 0, the following options 
are possible : 

• If  SLH < So, then dS/d~ < 0, and the solution is 
attracted to the (liquid-dominated) value SLH (Fig. 
4(d)). After exiting the heterogeneity, further inte- 
gration proceeds normally, much like in equation (16) 
until superheated vapor conditions are eventually 
reached (S = 0). 

• lfSvH < So < SLH, then dS/d( > O, and the solu- 
Uon is attracted to the same liquid-dominated asymp- 
tote, except that now the saturation increases in the 
short region before this asymptote is reached (Fig. 
4(e)). 

• Finally, if So < SVH, then dS/d~ < 0, but the 
solution is not attracted to a fiat profile. Instead, it 
decreases relatively fast, much like the homogeneous 
case (Fig. 4(f)). 

Thus, depending on the direction of  integration, 
two different solutions (a VD and an LD) emerge. 
This feature is particular to vapor- l iquid countel?flow. 
The selection was shown to be determined from the 
direction of  integration, or equivalently from the past 
history of  the system, which therefore attributes a 
large scale hysteresis [6]. The VD solutions of  Fig. 4 
correspond to steady states reached by a system which 
is initially vapor-occupied and subsequently cooled 
from the left, whde superheated conditions are main- 
tained somewhere on the right. This is a condensation 
process (akin to imbibition). The LD solutions of  Fig. 
4 correspond to steady states reached by an initially 
liquid-occupied system which is subsequently heated 
from the right, while subcooled conditions are main- 
tained somewhere on the left_ This corresponds to a 
boiling process (akin to drainage)_ We point out that 
hysteresis effects, but at the pore level, are routine in 
displacement processes. For  the present case of  
vapor- l iquid counterflow, however, the hysteresis 
(evaporat ion-condensat ion)  also involves large scale 
aspects (indeed, in the present work krv, k,  and J were 
taken invariant to direction). 

Before we proceed further, it is worthwhile to con- 
sider the limit of  a steep discontinuity (a < 0 and 
lal >> 1)_ As readily confirmed, the two roots approach 
the respective limits SVH ---' 0 and SLH --' 1 in this case. 
Because singularities are not  encountered, one may 
formally take the limit o fequa t ion  (8) at large la[. The 
result is the previous condition of  capillary pressure 
continuity (10), provided that the new saturation 
values do not lie close to either of  the two extreme 
values, 0 to 1. Otherwise, the term (o(k,+flk,)/kr~kr,, 
can become comparable to - a J  and the saturation 
jumps do not correspond to capillary pressure con- 
tinuity alone. 

The above analysis also applies when the hetero- 
geneity is slowly varying_ As shown below, the solu- 
tion is still a VD or LD branch, although of  variable 
saturation values. When the z profiles are arbitrary, 
however, a numerical solution is necessary. 

B. Vertical counterflow. We consider, next, the case 



972 A . K .  STUBOS et  al ,  

4 

o 

( 

(,1) 

SLI; . . . . . . . . . . . . . . . . . . . . . . . . . .  

S 

SL ~; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f l  

(c) 

1 

Sl, c; . . . . . . . . . . . . . . . . . . .  . ~  

S 

S~ r; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 

SLd. .................................... 

S 

Id) 

Fl(;. 5. Steady state selection in homogeneous heat pipes: 
(a) S, < SLc;; (b) S, >Stc;: (c) So > Svc,; (d) S~, < Sv~ 

Arrow denotes direction of integration. 

of vertical counterflow. Here, two generic con- 
figurations are possible, heating from the top 
(0 = n/2, sin0 > 0 ), and heating from the bottom 
(0 = 3n/2, sin0 < 0). Because it is more commonly 
encountered, we address the bottom heating case first. 

I. Bot tom heat#~ 9. Under  this condition, equation 
(2) yields 

d S  (kr'+flk~") ( z ' - - J a )  (17) 
T J" ~ = aJ k~.k~, 

where a({) is the heterogeneity gradient, a-= d~/d{. 
Clearly, capillarity augments or diminishes (a < 0 or 
a > 0, respectively) the effects of gravity (second term 
on the right-hand side of (17)). In the homogeneous 
case (r =- I, a - 0), the right-hand side above vanishes 
for the two saturation values Svc, and Sec, that solve 
equation (14), provided that ~o < {O~r.tq ~ 0.3- We 
recall that a similar condition was also encountered in 
heterogeneous, horizontal counterflow. The selection 
mechanisms of the horizontal case are therefore very 
much appropriate for homogeneous, gravity driven 
heat pipes as well. This is considered below where 
we use similar arguments, now for a homogeneous 
medium. As in ref. [I0], a crucial role is played by the 
boundary conditions imposed. 

(i) Homo.qeneous systems:  steadt' state selection. 
When the integration proceeds from the bottom (the 
'vapor side') upwards, it is the VD branch Svc, which 
is selected, if the starting saturation S, lies to the 
left, S. < St.a (Fig. 5(a)). This would be the case if 
superheated vapor existed somewhere below, as in the 
bottom curve of Fig. 5(a) (note also that because of 
(10), any desired saturation value is possible as a 
starting point, see top curve of Fig. 5(a)). In the 
interpretation of ref. [6] this case could result from an 

initially superheated system that partly condenses due 
to top cooling. If S, > SLc~, on the other hand, a flat 
profile does not develop and the saturation rapidly 
converges to S = 1 (Fig. 5(b)). 

By contrast, when the integration proceeds from 
the top (the 'liquid side') downwards, it is the LD 
branch, S~c;, which is selected, if the starting satu- 
ration S.  lies to thc right, S.  > Svc; (Fig. 5(c)). This 
is the case of subcooled liquid somewhere at the top, 
a typical application being boiling [6]. If So < Sv¢;, a 
flat profile does not develop, the saturation rapidly 
approaching the dry regime, S = 0 (Fig. 5(d)). We 
conclude that it is the past history of the system that 
determines the steady state solution. Evidently, all 
such saturation profiles are intrinsically stable. 

(ii) Sharp discontinuity: termhlation o [ a n  'infinite" 
two-phase zone. Consider next the case of an abrupt 
discontinuity (la[ >> 1). This analysis is necessary to 
explain how the VD or LD constant  saturation pro- 
files of heat pipes can merge with subcooled liquid or 
superheated vapor, respectively, thus how the theor- 
etical "infinite' two-phase zone can terminate in prac- 
lice. 

Consider. first, integration from the bottom within 
a constant permeability region (such that ~o < CO~rX;)- 
Then, a VD regime is rapidly reached. For a homo- 
geneous medium, this regime is predicted to continue 
indefinitely (but see also refs_ [6, 7]). Can this profile 
merge with another LD regime or with a region of 
subcooled liquid? The answer is negative to the first 
part, but not to the second. In either case, for a change 
in the regime the permeability must decrease to a 
lower value k, somewhere at the top. Because a is 
positive and [arge, the response is as in the horizontal 
case and capillary pressure continuity (10) applies. If 
k, is such that {o remains below critical at the top 
(recall that the critical flux is proportional to k), the 
previous scenario (pertaining to Figs. 5(a) and (b)) 
applies and the solution is either another VD region or 
a rapid approach to subcooled liquid, depending on 
the particular conditions. Ifo) > o)~.~ at the top, only 
a finite two-phase zone develops that rapidly ends by 
merging with a subcooled liquid region. From the 
previous analysis, quantitative estimates can be 
readily obtained. 

If integration proceeds from the top, an LD region 
is rapidly approached, assuming co < Og~r.C,. For  this 
flat profile to change, and for a dry region to be 
eventually encountered, two possibilities exist: if the 
bottom is at a low enough permeability, kh, such that 
co < O~r.C, the solution would rapidly approach 
dryout, after a short increase in the liquid saturation 
right after the discontinuity_ Dryout may also be 
reached, however, if the bottom is at a higher per- 
meability, such that the saturation jump across the 
discontinuity would result in low enough saturation 
values (smaller than Svc,). We can employ the pre- 
vious scenario of Fig. 5(d) to infer that there will be a 
relatively fast approach to a superheated (dry) regime 
under such conditions. 
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In summary, for a gravity driven VD heat pipe 
to terminate, it is necessary that the permeability 
increases somewhere in the downwards direction. A 
VD region exists at the bottom, while subcooled liquid 
dominates the top. If the change of  permeability is in 
the opposite direction, capillary pressure continuity 
cannot bring a qualitative change in the saturation 
state, in that case, the regime would always remain 
vapor-dominated.  For  an LD heat pipe, on the other 
hand, termination is possible by either a permeability 
decrease or a permeability increase, provided that they 
are both sufficiently high. Significantly, LD and VD 
branches never merge with each other, regardless of  
the heterogeneity This contrasts some of the argu- 
ments of  ref. [10] in which an 'unstable'  VD regime 
becomes connected to a "stable" LD regime, and vice 
v e r s a .  

(iii) General heterogeneity ~ffe('ts. Consider, next, 
general heterogeneity effects with normal variations in 
r. Equation (17) suggests that heterogeneity enhances 
(makes more vapor-rich or liquid-rich) the respective 
VD or LD regimes when a < 0, and acts to diminish 
them in the opposite case. In the numerical solution 
below we used r profiles that satisfy a correlated frac- 
tional Brownian motion (IBm) in the spatial interval 
[0.1] with H = 0.8, which appears to be the natural 
heterogeneity in many rocks [15]. Two cases were 

studied, a slow and a normal variation in hetero- 
geneity. By a simple rescaling of  the equations it can 
be shown that the first can be represented by a signal 
of the same variation as the second, except that the 
levels of  r must be higher. 

Before we proceed, it is instructive to provide order 
of magnitude estimates on the importance of  capillary 
heterogeneity relative to gravity. From either (2) or 
from (13) and (15) it is readily shown that gravity 
effects would predominate when the following is 
satisfied : 

( - -  A ~ / k / A . r )  << Apgk/er = N n  (18) 

where N,  is the Bond number. For  permeabilities in 
the order of  I darcy ( 10 "cm -~) and for a s team-water  
system, the above condition requires permeability 
variations much smaller than I darcy m ~. Capillary 
heterogeneity is even more enhanced when per- 
meabilities are lower, for example in the order of  1 
mdarcy (10 ~h cm:),  where the above requires vari- 
ations much smaller than 0.1 mdarcy m '. It follows 
that in many practical cases, capillary effects will not 
be negligible, particularly when permeability decreases 
in the direction of  liquid flow, where the gravity effects 
predicted by homogeneous heat pipes theory may be 
substantially altered. 
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Consider a normal variation o f z  (Fig. 6(a)). Here, 
the combination ~ : - a J  changes sign often within 
the interval. The solution displays hysteresis again. 
depending on the direction of  integration. Capillary 
effects are quite significant and a one-to-one cor- 
respondence with z(~) is not obeyed. In fact, for rela- 
tively steep increases in r, capillary pressure continuity 
may be in effect, as discussed above, resulting in lower 
saturation values. For  an LD state this is contrary 
to common gravity effects. Consider, for instance, 
integration from the left, where an LD regime is 
obtained provided that ~,~ is low enough (Fig. 6(b)). 
As long as the T variations are not too great, the 
saturation values are relatively constant (early part of  
Fig. 6(b)). The saturation variation is mild even 
though regions of relatively large increase in z are 
traversed. This behavior is similar to the horizontal 
counterflow for a negative and large_ At the point 
where a sharp increase is encountered and a becomes 
large (around the mid-point of  Fig_ 6(a)), capillarity 
dominates, capillary pressure continuity is enforced 
and the saturation falls significantly. If this decrease 
is not too large, a lower saturation state, but still of  
the VD type, will be followed in the remaining part. 

Under  the same conditions in oJ, a VD regime arises, 
when the integration is from the right (Fig. 6(c)). The 
first part of  the profile ({ roughly between 0.5 and 1) 
corresponds to heterogeneity with generally positive 
slope ( a >  0), thus capillary pressure continuity 
applies, the saturation rising as lower permeabilities 
are encountered. The second part of  the heterogeneity, 
however, involves a rather steep negative slope 
(between 0.15 and 0.4). After the saturation falls 
rapidly ({ between 0.3 and 0.4), further large 
changes in permeability do not induce significant satu- 
ration response. This interpretation is supported by 
the variation of  the capillary pressure (Fig. 6(d)), 
where the regime of capillary pressure continuity at 
the right half of  the interval is evident. When the heat 
flux increases, a transition to single phase region is 
possible, the LD or VD states reaching dryout (Fig. 
7(a)) or subcooled liquid (Fig. 7(b)), respectively, in 
a short region. This occurs first near the location with 
the highest positive slope in z (mid-point of  the 
interval). We emphasize that no transition from an 
LD to a VD state or vice versa was noted, while the 
two regimes maintain their identity in regions of  
decreases, no matter how sharp the latter are. 

Consider, next, a case of  much slower variation, 
where gravity effects are likely to predominate.  This 
case can also be analyzed asymptotically_ We take 
z = z({ / l ) ,  where / >> 1, and rescale the spatial variable 
using / as the characteristic length, { = /~ ,  to obtain : 

1 [" k,,k~, ~[" d S _ j  "~j f ""-" '~" / / J ' z ( ¢ ; )  d z  - -  CO krlk~"'["(() 
l \kr,+~k~,J \ ~ kr, -[- f l k rv  

i 

(19) 

Since />> 1, the solution is the saturation S(~) that 
makes the right-hand side vanish, thus representing 
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a gravity driven process in a weakly heterogeneous 
medium_ This is similar to homogeneous heat pipes, 
except that, because r is now variable, there exists a 
continuum ofcurves  similar to Fig. 3, each for a fixed 
z (or ~). Their intersection with the line of  constant co 
defines a continuum of S(z)  values, which when 
plotted in a S(c~) diagram give the solution to the 
problem. As before, there are two possible branches, 
a VD and an LD, to which the solution is always 
attracted (much like the cases in refs. [7, 12]). Again, 
VD and LD sequences are followed closely without 
the branches ever becoming intertwined. It follows 
that given a direction of  integration, there is a direct 
one-to-one correspondence between the heterogeneity 
z and the saturation, S. 

For  a numerical example we used the profile of  Fig. 
8(a). Because the combinat ion ~ 2 - a j  is always posi- 
tive, it is possible for the right-hand side of  equation 
(17) to vanish for all z provided that ~o is low enough 
((d) < QJcr.min, where o2~,.mm must be obtained numeri- 
cally). According to equation (19), the solution must 
follow closely the variation of  z'-, resulting in either 
an LD or a VD branch, depending on the direction 
of  integration. Numerical  results shown in Figs_ 8(b) 
and (c) for the respective regimes verify the theoretical 
predictions. After a short interval, the profiles are 
attracted to the asymptotic states and, with a small 
spatial delay (of about  0.05), mimic the variation of  
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[-'. The VD solution shows a weaker sensitivity due 
to the relatively narrower range of  saturation values 
allowed. As predicted, saturations in the LD regime 

increase or decrease as ~ increases or decreases, respec- 
tively, while the saturations in the VD regime follow 
opposite trends. 

When the heat flux acquires larger values 
(co > ~u~,.,,m), there are spatial locations where the 
local critical values may be exceeded (uJ > c~¢,(~)). 
Then, the saturation departs from the corresponding 
regimes and becomes rapidly attracted to a single 
phase region (dryout in the case of  an LD state or 
subcooled liquid in the case of  a VD state). By 
contrast, for the very low values of  o) typical of  geo- 
thermal reservoirs, all saturation values in the VD 
regime are very low, hence the profile is nearly flat 
(Fig. 8(d)) despite the permeability variations. It is 
clear that the existence of  a flat profile should not be 
taken to imply a homogeneous medium. 

2_ Top heatb~g. We close by briefly noting that 
similar results are obtained for the case of  top heating 
(sin0 = 1)_ Now, equation (I) yields 

dS k,i-+- flkrv 
~ J ' d ~  = e~--krlk,,. +(~'-+Ja). (20) 

For  a > 0, then dS/d~ < 0 throughout,  and the solu- 
tion follows in a straightforward fashion_ Likewise, a 

monotonic  profile (quite similar to the horizontal 
case) is obtained for a < 0 and sufficiently large t,~. If 
the latter is low enough, however, the heterogeneity 

may lead to gravity-like VD and LD regimes, much 
like in the horizontal case. The various subcases were 
exhaustively treated, and we shall not elaborate on 
them further. 

3. CONCLUSIONS 

Within the framework of a continuum description, 
effects of  permeabilily heterogeneity on steady state, 
vapor-l iquid counterflow in porous media were exam- 
ined. Permeability variations affect two processes, 
gravity-driven flow and capillarity. The variations of  
the latter can be significant. It was shown that capil- 
lary heterogeneity acts like an external body force 
(such as gravity), with the additional property that it 
also varies spatially. A multiplicity of  steady states 
similar to gravity-driven heat pipes was found for 
decreasing permeabilities in horizontal counterl]ow 
and for heat fluxes lower than a critical value. Vapor- 
dominated and liquid-dominated regimes were 
obtained using selection rules that were postulated to 
depend on the past history (transient state) of  the 
system. The analysis was aided by an exact solution 
obtained for a special heterogeneity profile_ 



976 A . K .  STUnOS et al. 

In retrospect, the analogy between capillary het- 
erogeneity and gravity is not unexpected. In capillary- 
controlled displacements  in pore networks,  effects of  
either gravity or pore size heterogeneity can both be 
successfully described by the gradient  percolat ion 
approach  of  ref. [16]. In terms of  con t inuum models, 
lhe analogy between capillary heterogeneity and grav- 
ity was noted in the concurrent  flow study of  ref. [I I]. 
In the latter case. however, the curve cor responding  
to to(S) (which represented an augmented  fractional 
flow curve) admits  only one root,  therefore there was 
stable a t t rac t ion  to a single root  only. In ref. [11], 
steady state sa tura t ion  profiles were obtained by back- 
wards integrat ion s tar t ing From the outlet  end 
(opposite to the flow direction),  since the solution was 
ill-posed and rapidly diverted if in tegrat ion started 
from the opposite end. In the present case of  counter-  
current  flow, both  sides can be used as starl ing points  
for the integrat ion.  As shown above,  which end is 
taken is decisive on the selection of  the par t icular  
solution. This was implicitly conta ined also in ref. 
[10]. 

The selection rules were next applied to determine 
the steady state regimes in gravity-driven heat pipes in 
homogeneous  systems. It was shown that  the different 
regimes may never connect  with each other,  thus 
retaining their identi ty as long as the system remains 
in a two-phase state. The issue of  the terminat ion of  
the infinite two-phase zone was next analyzed. For  
VD systems it was shown that  terminat ion requires a 
sharp  increase in the permeabil i ty (in the direction of  
increasing depth)  somewhere in the m e d i u m  Across 
this discont inui ty  the underlying VD state is rapidly 
converted to a subcooled liquid. For  LD systems on 
the other  hand,  d ryout  can be reached as depth  
increases by either a sharp  increase or a sharp  decrease 
of  permeabili ty.  The emerging picture from top-to- 
bo t tom is thus. subcooled l iqu id- (d i scon t inu i ty ) -  
VD~dry region or subcooled l iqu id -LD-(d i scon-  
tinuity) dry region, in the respective cases_ This 
order ing may be helpful in the in terpre ta t ion of  geo- 
thermal systems. 

The impor tance  of  capillary heterogeneity relative 
to gravity was demons t ra ted  in a study of  two different 
heterogeneity modes, a slow and  a normal  variat ion.  
For  permeabil i t ies that  vary slowly, the main  effect is 
due to gravity, and  the sa tura t ion  response may follow 
the permeabil i ty var ia t ion depending on heat flux 
values_ Larger var ia t ions  in permeabil i ty induce sig- 
nificant capillary effects. Often, capillary pressure con- 
tinuity across a sharp  permeabil i ty change may lead 
to dryout  or to subcooled liquid. Capil lary pressure 
cont inui ty  is not  necessarily the only appropr ia te  con- 
dit ion relevant  to a decrease in permeabili ty.  Such 

effects a t t r ibute  a significant large scale hysteresis on 
the sa tura t ion  profiles. 
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