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Abstract— Based on a continuum description. the effect of capillary heterogeneily, induced by variation in
permeability. on Lhe steady slate, counlercurrent, vapor-liquid flow in porous media is analyzed. It is
shown that the heterogeneity acts as a body force, that may enhance or diminish gravity effects on heat
pipes. Selection rules that determine the steady slates reached in homogeneous, gravity-driven heat pipes
are also formulated. It is shown that the “infinite’ two-phase zone may terminate by a subslantial change
i the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated—dry,
or hquid-vapor dominated—dry find applications in geothermal systems. Finally. il is shown that although
weak heterogeneity aflects only gravity controlled flows, slronger variations in permeability can give rise
to significant capillary effects.

1. INTRODUCTION

COUNTERCURRENT vapor-liquid flow in porous media
has been the subject of many recent studies due to its
relevance to geothermal processes, boiling, thermal
methods for oil recovery and nuclear waste disposal
[1-5]. Of particular interest are steady state heat pipes
driven by gravity. Current theory dictates that in
homogeneous systems an infinitely long two-phase
zone of constant saluration develops if the heating rate
1s low enough (below a critical value). Two such states
are predicled, one corresponding to low liquid satu-
ralion (vapor dominaled, VD) and one correspond-
ing to high liquid saturation (liquid dominated, LD).
In a recent note [6], we conjectured that the particular
solution is selected based on the past history of the
system. For instance, in boiling (bottom heating) it 1s
the LD branch that is followed. While, in con-
densation of a superhealed vapor (top cooling), it is
the VD branch that is selected [7]. In either case,
however, capillarity is necessary Lo connect the con-
stant saturation profiles to the subcooled or dry
regions, respectively.

In practice, of course, all systems are finite and
heterogeneous. The two-phase zone must terminate
at a finite location, where the ‘infinite’ extent results
of the homogeneous case break down. Termination
of the two-phase zone must be obtained by smoothly
merging the two-phase region with either a subcooled
liquid or a dry region, in the two cases. respectively
(otherwise, non-zero vapor and liquid fluxes would
exist at the impermeable boundary [6]). It has been
lacitly implied in previous studies that this can be
accomplished with a sharp permeability change. Anal-
ogous considerations apply to the gravitational stabil-
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ity of vapor-liquid counterflow, when a vapor-rich
region underlies a subcooled liquid layer (8, 9]. The
present consensus is that unconditional stability is
possible only if a permeability heterogeneity exists
somewhere in the two-phase region.

Heat pipe instability in the very different context of
the sensitivity of steady, 1-D profiles to the boundary
conditions, has also been considered. It was suggested
[10] that, under certain boundary conditions, a VD
solution is unconditionally ‘unstable’ and must revert
to a ‘stable’ LD configuration, or vice versa, if the
boundary conditions are reversed. While not immedi-
ately apparent, this problem is actually related 10
effects of heterogeneity. Indeed, for non-condensing
fluid flows in porous media, boundary conditions can
be successfully treated as effects of heterogeneity,
where the change in permeability is abrupt and very
large [11]. Analogous considerations apply for the
countercurrent flow case, as discussed below.

Effects of heterogeneity on vapor-liquid concurrent
flow were studied in ref. [12], where previous work on
the steady slate, two-phase flow of non-condensing
fluids [11] was extended. Heterogeneity effects on
countercurrent vapor-liquid flows, however, have not
been systematically addressed (see also ref. [13]) and
they are currently poorly understood. As briefly
described above, cases in point are the issues of the
termination of the ‘infinite’ two-phase zone, of the
gravitational instability and of the sensitivity to
boundary conditions. This paper aims at resolving
some of these issues. Based on the key assumption
that capillarity and permeability are interrelated, we
theoretically investigate various effects of hetero-
geneity. We find that in 1-D vapor-liquid counterflow,
permeability (capillary) heterogeneity acts much like a
body force (e.g. gravity), with the additional property
that it is spatially varying. Such heterogeneity may
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NOMENCLATURE
a heterogeneity gradient, dt/d¢ T temperature [K]
d spatial extent of heterogeneity [m] x spatial coordinate [m].
g gravitational acceleration [ms™7]
J Leverett function
k permeability [m?) Greek symbols
k* reference permeability [m?] f ralio of kinematic viscosilies, r/r,
k.. k. relative permeabilities ¢ rescaled spatial coordinate, //
L, latent heat [J kg™ '] 0 angle of inclination
/ characteristic length scale in (18) [m] A thermal conductivity [Wm ™ 'K~
M.  molecular weight [kgkmol~ '] I dynamic viscosity [Pa s]
Na Bond number & dimensionless spatial coordinate,
P pressure [Pa} x/kghpjo
P, capillary pressure [Pa] P density [kgm ™
4 heat flux [Wm~7) o surface lension [Nm™']
R gas constant [m* Pa K~ ' mol '] T heterogeneity variable, /(k/k*)
S liquid saturation w dimensionless heat flux.

thus enhance or counterbalance pgravily effects.
depending on amphitude and variation.

The paper is organized as [ollows. We first consider
the horizontal case, which allows for capillary effects
only to be studied and for an exacl solution lo be
developed. Then, we consider effects of gravity. Selec-
tion rules are developed for a homogeneous heat pipe
when the heat flux is below critical. Next, we address
heterogeneous gravity heat pipes at conditions ol both
slow and fast permeability vanation. In all cases, heat
conduction is neglected. The description is based on
a continuum formalism and employs the concepts
of equilibrium, saturation-dependent only, capillary
pressure and relative permeability. Whether this for-
malism 1s adequate [or rapidly varying permeabilities
is not questioned. It is conceivable thal, at least in the
case of sharp heterogeneities, some of the results may
need further support, e.g. from more detailed pore
network-level analysis.

2. FORMULATION

2.1. Preliminaries

The heterogeneous variable of interest (o this work
1s permeability [11, 12]. As a result of the Leverett J-
function representation, the variable mostly affected
in the present 1-D counterflow is capillary pressure

_ aJ(S)
Jk
Although the dimensionless function J (as well as the
relative permeabilities}) may also be weakly varying
with permeability, it is the dimensional \/k-depen-
dence that controls the capillary variation (see also
ref. [11] for a more detailed discussion). This de-
coupling of saturation and permeability on the capil-
lary pressure is the key to the present investigation.

In heat pipes, the importance of conduction is
expressed through the dimensionless group (7]

PC

(1)

KR, = kLM, Pyp. /1, RT;. Typically, KR, is large
(equal to 5184 for the conditions in ref. [3]) and con-
duction is negligible. Conduction must be retained,
however, in systems with low & or high 4 values,
although such cases may be of limited practical inter-
est (but see ref. [6]). Conduction is also important
in the geothermal systems of the type discussed by
Schubert and Straus [14], where its inclusion 1s necess-
ary in order to sustain the counterflow. Regardless of
the application, however, the relevance of conduction
to a study of capillary heterogeneity should be small.

In its absence, saturation and temperature are
decoupled from each other and the solution is ob-
tained by simple means. Following ref. [7], a straight-
forward manipulation of mass, momentum and energy
balances yields the simple equation

(krl + [M

ds dr
B J krlkrv

Tjd—é Eé—w

+tisinfd  (2)
Here t = \/(k/k*) is the heterogeneity variable which
is spatially varying, k* denotes a constant reference
permeability and superscript * indicates derivatives
with respect to S. The notation follows ref. [7] except
for 1, which here measures permeability rather than
temperature. The dimensionless coordinale ¢ in-
creases such that liquid velocily is positive, and vapor
velocity and heat flux are negative, while the
dimensionless heat flux w = |¢g|u/k*L.gApp, 1s nor-
malized with a reference permeability. In this
notation, therefore, different permeability regions
have the same value of w, but not the same critical
values (see also below). The angle 0 is measured with
respect to the horizontal in a counterclockwise sense
(Fig. 1).

Equation (2) must be generally solved numerically.
Preliminary insight can be obtained by analytical solu-
tion, which is possible for a special case in horizontal
counterflow. This case also highlights important
effects of capillary heterogeneity.
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FIG. |. Schemalic of counterflow geometry.

A. Horizontal counterflow. In a horizontal system
(0 = 0) counterflow is driven by capillarity alone [5]
and (2) yields

ds

(krl +Bkrv) Jdr
AT kk, T at

i ok, TaE

(3)
It is instructive to compare (3) with the equation
corresponding to a homogeneous gravity heat pipe
(0 = 37n/2, T = 1), which reads

,d (ko + Bk..)
JS—==0——
dé krlkrv
Then, it becomes clear that capillary heterogeneity
and gravity (second terms on the right-hand side of
(3) and (2)) play similar roles. To explore this simi-
larity, we consider the special case of (3) where 1 is
piecewise hnear (Fig. 2)

L. (4)

1; E<0
r=<al+1; O0<é<d (5)
743 d<{¢

where 7, = ad+ 1. In the above, the spatial extent

(a)

FiG. 2. Horizontal counterflow with a > 0: (a) T (permeability) profile; (b) saturation response.

of the heterogeneity was denoted by d > 0, while a
indicates the direction of change (¢ >0 for an
increase, a < 0 for a decrease of 1).

In the homogeneous region, { <0 or d < &, the
solution is a continuously decreasing saturation
obtained from (3) by setting t = 1. Inside the hetero-
geneity, 0 < ¢ < d, the saturation satisfies

kak.J dS o d¢g
w(krl +ﬁkr\') +krlkr\‘a‘] B aé + 1

(6)

which can be readily integrated. Because of quali-
tatively different responses, two different cases will be
considered.

1. a>0 (Fig. 2(a)). Here, the permeability is
increasing and we obtain the straightforward result

s ka k. J dS B ll " ;
s, (kg + ko) +hokoal  a n@+1) (7)

where S, is Lhe saturation at 0. Because of a > 0, the
saturation decreases steadily also within the region of
heterogeneity (Fig. 2(b)). The downstream value S,
satisfies

Y kkysds 1 @
S, w(krl +ﬂkrv) +krlkrva1 B a i )

0

provided that a solution to the latter exists. This
requires

J' kiko(—J)dS 1
0

wlkat o) Hhghnad > am e O
Otherwise, single-phase flow conditions may develop
inside Lthe region of heterogeneity. The particular satu-
ration profile depends on the conditions imposed out-
side this region. Il the location of the subcooled liquid
boundary on the left or the dry boundary on the right
is known, then integration proceeds from left to right
or vice versa, and S, S, etc. can be determined
sequentially. The analogy of this result to homo-
geneous gravity heat pipes, is evident. The cor-
responding problem is top heating (6 = n/2) with
vapor at the top and liquid at the bottom. Con-
tinuously decreasing saturation profiles for this prob-
lem with features qualitatively similar to the middle

(®)
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FiG. 3. The lunction w(S) lor capillary helerogeneity heat pipe (solid curve) and for gravity heat pipe
(dashed curve).

portion of Fig. 2(b) have been derived before in refs.
[3,7].

Of special interest is the case of a sharp dis-
continuity (a » 1). Then, (8) yields

o)
IS0~ TN \ke

which is the condition of constant capillary pressure,
implying a saturation jump across the discontinuity.
This well-known static (no flow) condition also arises
in the case of concurrent flow [11]. In the latter, a
build-up of the wetting phase saturation is necessary
before a high permeability region is entered.

2. a < 0. More interesting results arise in the case
of a permeability decrease. Indeed, when a < 0, the
denominator in (6) may vanish, if @ is small enough.
For this to occur, the following equation must admit
a real solution:

(109)

.] krlkrv (1 l)
w=—af———.
“lea+ B,
The right-hand side of (11) is schematically plotted in
Fig. 3 fora = —1. We note that there exists a critical
value
Jkok,,
Ween = (—a) max ko + Pl (12)

above which a real solution to (11) does not exist. The
maximum is equal to 0.7, hence the critical value is
proportional to the heterogeneity intensity (—a).
Equation (12) suggests the existence of a critical heat

flux
L dJk
Gern = 076 wPy (— i)
u dx

(13)
the value of which increases with sharper changes
in permeability. It follows that the saturation profile
depends on the relative value of w:

(i) For w > w,, y. equation (11) has no solution.
The effect of heterogeneity is identical to the previous
(a > 0), the solution is described as in the schematic
of Fig. 2(b).

(i) For w < w, y, equation (11) has two roots,
denoted by Sy, and Sy (0 < Syp < Sin < 1), lo one
ol which the solution is attracted. This is in very
close analogy with the vapor-dominated or liquid-
dominated regimes of homogeneous gravity heat
pipes. In the latter, the two attractors Syg and S\ are
solutions of

2k.k..

= ket Bhre

(14)

which gives rise to a critical value o, g (equal to 0.3063
[3] for T = 1 (Fig. 3)). The corresponding critical heat
Aux is

L.p.
e = 0.3
GerG M

gkAp. (15)

v

By a comparison of (15) with (13) it is evident that
capillary heterogeneity o(d./k/dx) plays a role identi-
cal to gravity gkAp. This similarity is further discussed
later. As in gravity heat pipes, the saturation integral
in (6) diverges at the two saturations Syy and Sy u.
thus nearly flat saturation profiles (either VD or LD)
develop to span the region of heterogeneity. Here,
however, it is capillary heterogeneity, with the per-
meability decreasing in the direction of liquid flow
and not gravity, that sustains the constant saturation
profiles. The particular solution selected depends on
the direction of integration as shown in the following.

Consider, first, integration from the vapor side.
This requires that superheated vapor exists some-
where on the right so that we may integrate from
the location § =0 in the negative ¢ direction. The
saturation, §,, reached at ¢ = d, dictates how the
solution behaves inside the heterogeneity :



Effects of capillary heterogeneity on vapor-liquid counterflow in porous media 971

Scn

Svp| e

Sin
S,
5 d
. §

FiG. 4. Saturation profiles for a<0: (a) S, < Syy:

() Syn <8, < Siyi (€) Sun < 8y (d) Suny < 85 (€) Svu<

So < Suni (NS¢ < Sy Arrow denotes direction of inte-
gration.

o If S, < Syu, then dS/d& < 0, and the saturation
1s rapidly attracted to the asymptotic value Sy, (Fig.
4(a)). This is a vapor-dominated regime. Outside
the heterogeneity, ¢ < 0, the integration is straight-
forward

S k.k.J'dS
J ! wé. (16)

s (ke Bhry)

This solution applies until conditions of subcooled
liquid are reached (S = I).

o If Sy, < S\ < SLu, then dS/d& > 0, and the satu-
ration becomes again asymptotic to Syy, except thal
the saturation is now decreasing in the short region
before the asymptote is reached (Fig. 4(b)).

e Finally, if S,y < S, thendS/d¢ < 0, but the satu-
ration cannot be attracted to a flat profile. The latter
does not develop, instead the saturation is described
by the previous equations (7)—(9), much like case A.1
(Fig. 4(c)).

Consider, next, integration from the liquid side. We
assume that subcooled liquid exists somewhere on the
left, such that we can proceed integrating from the
location S = 1 in the positive direction. If we denote

by S, the saturation at & = 0, the following options
are possible :

e If S,y < S, then dS/d¢ < 0, and the solution is
attracted to the (liquid-dominated) value S,,, (Fig.
4(d)). Afler exiting the heterogeneily, further inte-
gration proceeds normally, much like in equation (16)
until superheated vapor conditions are eventually
reached (S = 0).

o If Syy < Sp < Sin. then dS/d¢ > 0, and the solu-
tion is attracted to the same liquid-dominated asymp-
tote, except that now the saturation increases in the
short region before this asymptote is reached (Fig.
4(e)).

e Finally, if S, < Syy, then dS/dé < 0, but the
solution is not attracted to a flal profile. Instead, it
decreases relatively [ast, much like the homogeneous
case (Fig. 4()).

Thus, depending on the direction of integration,
two different solutions {(a VD and an LD) emerge.
This feature is particular to vapor-liquid counterflow.
The selection was shown to be determined from the
direction of integration, or equivalently [rom the past
history of the system, which therefore attributes a
large scale hysteresis [6]. The VD solutions of Fig. 4
correspond to steady states reached by a system which
is initially vapor-occupied and subsequently cooled
from the left, while superheated conditions are main-
tained somewhere on the right. This is a condensation
process (akin to imbibition). The LD solutions of Fig.
4 correspond to steady states reached by an initially
liquid-occupied system which 1s subsequently heated
from the right, while subcooled conditions are main-
tained somewhere on the left. This corresponds to a
boiling process (akin to drainage). We point out that
hysteresis effects, but at the pore level, are routine in
displacement processes. For the present case of
vapor-liquid counterflow, however, the hysteresis
(evaporation—condensation) also involves large scale
aspects (indeed, in the present work k.. k,, and J were
taken invariant to direction).

Before we proceed further, it i1s worthwhile to con-
sider the limit of a steep discontinuity (g <0 and
la| > 1). Asreadily confirmed, the two roots approach
the respective limits Sy, — 0 and S, — | in this case.
Because singularities are not encountered, one may
formally take the limit of equation (8) at large {a|. The
result is the previous condition of capillary pressure
continuity (10), provided that the new saturation
values do not lie close to either of the two extreme
values, 0 to 1. Otherwise, the term w(k, + pk..)/kak,.
can become comparable to —aJ and the saturation
jumps do not correspond to capillary pressure con-
tinuity alone.

The above analysis also applies when the hetero-
geneity is slowly varying. As shown below, the solu-
tion is still a VD or LD branch, although of variable
saturation values. When the 7 profiles are arbitrary,
however, a numerical solution is necessary.

B. Vertical counterflow. We consider, next, the case
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FiG. 5. Steady slate selection in homogeneous heat pipes:
(@) S <8g: (b) 5> Sig: (€) Sp> Svg: (d) S < Sve-
Arrow denotes direction of inlegralion.

of vertical counterflow. Here. two generic con-
figurations are possible, heating (rom the top
(0 = n/2, sin0 > 0 ), and hcating {rom the botlom
(0 = 3n/2, sin0 < 0). Because it is more commonly
encountered. we address Lhe boltom heating case first.
I. Bottom heating. Under Lhis condilion, equation

(2) yields
dS  (ky+pBk.) X

W —=w K (t-—Ja)

a: = an

where a(&) is the heterogeneity gradient, ¢ = dz/d¢.
Clearly, capillarily augments or diminishes (¢ < 0 or
a > 0, respectively) the effects of gravity (second term
on the right-hand side of (17)). In the homogeneous
case (t = 1, a = 0), the right-hand side above vanishes
for the two saturation values Syg and S, that solve
equation (14), provided that w < w.,g = 0.3. We
recall that a similar condition was also encountered in
heterogeneous, horizontal counterflow. The selection
mechanisms of the horizontal case are therefore very
much appropriate for homogeneous, gravity driven
heat pipes as well. This 1s considered below where
we use similar arguments, now for a homogeneous
medium. As in rel. [10], a crucial role is played by the
boundary conditions imposed.

(i) Homogeneous systems: steady state selection.
When the integration proceeds from the bottom (the
*vapor side’) upwards, it is the VD branch S, which
is selected, il the starting saturation S, lies to the
left, S, < S ¢ (Fig. 5(a)). This would be the case if
superheated vapor existed somewhere below, as in the
bottom curve of Fig. 5(a) (note also that because of
(10), any desired saturation value 1s possible as a
starting point, see top curve of Fig. 5(a)). In the
interpretation of ref. [6] this case could result from an

initially superhealed system Lhat partly condenses due
to top cooling. Il S|, > S, ;. on the other hand, a flat
profile does nol develop and the saturation rapidly
converges to S = 1 (Fig. 5(b)).

By contrast. when the integration proceeds from
the Lop (the ‘liquid side’) downwards. it is the LD
branch. S, ;. which is selecled, il the starting satu-
ration S, lies to the right, S, > Sy (Fig. 5(c)). This
is the case of subcooled liquid somewhere at the top,
a Lypical application being boiling [6]. I S, < Sv. 2
flat profile does not develop, the saturation rapidly
approaching the dry regime, S =0 (Fig. 5(d)). We
conclude that it is the past history of the system that
determines the sleady slate solution. Evidenlly, all
such saluration profiles are intrinsically stable.

(if) Sharp discontinuity : termination of an ‘infinite’
nro-phase zone. Consider next the case of an abrupt
discontinuity (|a| » 1). This analysis is necessary to
explain how Lthe VD or LD constant saturation pro-
files of heat pipes can merge with subcooled liquid or
superheated vapor, respectively, thus how the theor-
ctical “infinite’ two-phase zone can (erminale in prac-
lice.

Consider. first, integration from the bottom within
a conslant permeabilily region (such that o < w.)-
Then, a VD regime is rapidly reached. For a homo-
gencous medium, this regime is predicled to continue
indefinitely (but see also refs. [6, 7]). Can this profile
merge with another LD regime or with a region of
subcooled liquid? The answer is negative to the first
part, but not to the second. In either case, [or a change
in the regime the permeability must decrease to a
lower value & somewhere al the (op. Because a is
positive and large, the response is as in the horizontal
case and capillary pressure continuity (10) applies. If
k. is such that o remains below critical at the top
(recall that the critical flux 1s proportional to k), the
previous scenario (pertaining to Figs. 5(a) and (b))
applies and the solution is either another VD region or
a rapid approach to subcooled liquid, depending on
the particular conditions. If @ > ), ; at the top, only
a finite two-phase zone develops that rapidly ends by
merging with a subcooled liquid region. From the
previous analysis, quantitative estimates can be
readily obtained.

Il integration proceeds from the top, an LD region
1s rapidly approached, assuming w < w,. . For this
flat profile to change, and for a dry region to be
eventually encountered, two possibilities exist : if the
bottom is at a low enough permeability, &y, such that
® < W, the solution would rapidly approach
dryout, after a short increase in the liquid saluration
right after the discontinuity. Dryout may also be
reached, however, il the bottom is at a higher per-
meability, such that the saturation jump across the
discontinuity would result in low enough saturation
values (smaller than Sys). We can employ the pre-
vious scenario of Fig. 5(d) to infer that there will be a
relatively (ast approach to a superheated (dry) regime
under such conditions.
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In summary. for a gravity driven VD heal pipe
lo lerminale, it 1s necessary Lhal the permeability
increases somewhere in the downwards direction. A
VD region exists at the bottom. while subcooled liquid
dominates the Lop. If the change of permeability is in
the opposite direction, capillary pressure continuity
cannot bring a qualitative change in the saturation
state. In that case. the regime would always remain
vapor-dominaled. For an LD heal pipe. on the other
hand, termination is possible by either a permeability
decrease or a permeabilily increase, provided that they
are both sufficiently high. Signmificantly, LD and VD
branches never merge with each other, regardless of
the heterogeneity. This contrasts some ol the argu-
ments of rel. [10] in which an ‘unstable’ VD regime
becomes connected to a ‘stable’ LD regime, and vice
versa.

(iif) General heterogeneity effects. Consider, next,
general heterogeneity effects with normal variations in
7. Equation (17) suggests that heterogeneily enhances
{makes more vapor-rich or liquid-rich) the respective
VD or LD regimes when a < 0. and acts to diminish
them in the opposite case. In the numerical solution
below we used 1 profiles thal satisfy a correlated (rac-
tional Brownian motion ([Bm) in the spatial interval
[0.1} with H = 0.8, which appears to be the natural
heterogeneity in many rocks [15]. Two cases were
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studied, a slow and a normal variation in hetero-
geneity. By a simple rescaling ol the equations il can
be shown that the first can be represented by a signal
of the same variation as the second. except that the
levels ol 7 musl be higher.

Beflore we proceed. it is insLructive Lo provide order
of magnitude estimates on the importance ol capillary
heterogeneity relative Lo gravity. From either (2) or
from (13) and (15) it is readily shown thal gravity
effects would predominate when the following is
satisfied :

(—A\/k/A.\‘) « Apgklo = Ny (18)
where Ny is the Bond number. For permeabilities in
the order of | darcy (10 *cm?) and for a steam-water
system, the above condilion requires permeability
variations much smaller than 1 darcy m~'. Capillary
heterogeneity i1s even more enhanced when per-
meabilities are lower, [or example in the order of |
mdarcy (107 "' cm?), where the above requires vari-
ations much smaller than 0.1 mdarcy m ' It follows
that in many practical cases, capillary effects will not
be negligible, particularly when permeability decreases
in the direction of liquid flow, where the gravity eflects
predicted by homogeneous heal pipes theory may be
substantially altered.

(b)
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FIG. 6. Normal heterogeneity: (a) t profile; (b) LD regime, @ =0.02; (c) VD regime, w = 0.02;
(d) dimensionless capillary pressure for the LD regime.
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Consider a normal variation ol t (Fig. 6(a)). Here,
the combination t°—aJ changes sign often within
the interval. The solution displays hyslercsis again.
depending on the direction of integration. Capillary
effects are quite significant and a one-to-one cor-
respondence with 7({) is not obeyed. In fact. for rela-
tively steep increases in t, capillary pressure continuity
may be in effect, as discussed above, resulting in lower
saturation values. For an LD state this is contrary
to common gravity effects. Consider, for instance.
integration [rom the lefl, where an LD regime is
oblained provided thal o is low enough (Fig. 6(b)).
As long as the 7 variations are nol (oo great, the
saturalion values arc relatively constant (early part of
Fig. 6(b)). The saturation variation is mild even
though regions of relatively large increase in 7 are
traversed. This behavior is similar to the horizontal
counterflow lor ¢ negative and large. Al the point
where a sharp increase 1s encountered and a becomes
large (around the mid-point of Fig. 6(a)). capillarity
dominates, capillary pressure continuily is enforced
and the saturation falls significantly. Il this decrease
is not too large, a lower saturation state, but still ol
the VD type, will be followed in the remaining part.

Under the same conditions in w, a VD regime arises,
when the integration is from the right (Fig. 6(c)). The
first part of the profile (¢ roughly between 0.5 and 1)
corresponds to heterogeneity with generally positive
slope (¢ > 0), thus capillary pressure continuity
applies. the saturation rising as lower permeabilities
are encountered. The second part of the heterogeneity,
however, involves a rather steep negative slope
(between 0.15 and 0.4). After the saturation falls
rapidly (¢ between 0.3 and 0.4), further large
changes in permeabilily do not induce significant satu-
ration response. This interpretation 1s supported by
the variation of the capillary pressure (Fig. 6(d)).
where the regime of capillary pressure continuity at
the right half of the interval is evident. When the heat
flux increases, a transition to single phase region is
possible, the LD or VD slates reaching dryout (Fig.
7(a)) or subcooled hiquid (Fig. 7(b)), respectively, in
a short region. This occurs first near the location with
the highest positive slope in 7 (mid-point of the ¢
interval). We emphasize that no transition from an
LD to a VD stale or vice versa was noted, while the
two regimes maintain their identity in regions of
decreases, no matter how sharp the latter are.

Consider, next, a case of much slower variation,
where gravity effects are likely to predominate. This
case can also be analyzed asymptotically. We take
7 = t(&/l), where! > 1, and rescale the spatial variable
using / as the characteristic length, & = [{, to obtain:

1< kok,, ( ; (,)ds Jdr kak, t2(0)

N W)z T | = 0o— 5.

1 \k+ Pl YA A o+ By
(19)

Since /> 1, the solution is Lhe saturation S({) Lhat
makes the right-hand side vanish, thus representing
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a gravity driven process in a weakly heterogeneous
medium. This is similar to homogeneous heat pipes,
except that, because 1 1s now varnable, there exists a
continuum of curves similar Lo Fig. 3, each for a fixed
7 (or {). Their intersection with the line ol constant w
defines a continuum of S(tr) values, which when
plotted in a S({) diagram give the solution to the
problem. As belore, there are two possible branches,
a VD and an LD, to which the solution is always
attracted (much like the cases in refs. [7, 12]). Again,
VD and LD sequences are followed closely without
the branches ever becoming intertwined. It follows
that given a direction of integration, there is a direct
one-to-one correspondence between the heterogeneity
7 and the saturation, S.

For a numerical example we used the profile of Fig.
8(a). Because the combination t°—aJ is always posi-
tive, it is possible for the right-hand side of equation
(17) to vanish for all = provided thal w is low enough
(0 < Wermine Where we, min Must be obtained numeri-
cally). According to equation (19), the solution must
follow closely the variation of 2, resulting in either
an LD or a VD branch, depending on the direction
of integration. Numerical results shown in Figs. 8(b)
and (c) for the respective regimes verify the theoretical
predictions. After a short interval, the profiles are
attracted to the asymptotic states and, with a small
spatial delay (of about 0.05), mimic the variation of
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2. The VD solution shows a weaker sensitivity due
to Lhe relatively narrower range of saturalion values
allowed. As predicled. saturations in the LD regime
increase or decrease as t increases or decreases, respec-
tively. while the saturalions in the VD regime follow
opposite trends.

When the heat flux acquires larger values
(w > W, min). there are spatial locations where the
local critical values may be exceeded (w > w,(S)).
Then, Lhe saturation deparls [rom the corresponding
regimes and becomes rapidly attracled to a single
phase region (dryout in the case of an LD state or
subcooled liquid in the case of a VD state). By
contrast, for the very low values of w typical of geo-
thermal reservoirs, all saluration values in the VD
regime are very low, hence the profile is nearly flat
(Fig. 8(d)) despite the permeability variations. It is
clear that the existence of a flat profile should not be
taken to imply a homogeneous medium.

2. Top heating. We close by briefly noting that
similar results are obtained for the case of top heating
(sin0 = 1). Now, equation (1) yields

,dS  ky+ ke,

T d4§_ k. + (" +Ja).

(20)

For a > 0, then dS/d¢ < 0 throughoul. and the solu-
tion follows in a straightforward fashion. Likewise. a

monolonic profile (quite similar to the horizonlal
case) is obtained lor « < 0 and sufficiently large w. If
the latter is low enough, however, the heterogeneity
may lead to gravity-like VD and LD regimes. much
like in the horizontal case. The various subcases were
exhaustively treated, and we shall not elaborate on
them further.

3. CONCLUSIONS

Within the framework of a continuum description,
effects of permeabilily heterogencity on steady slale,
vapor-liquid counterflow in porous media were exam-
ined. Permeability variations affect (wo processes,
gravity-driven flow and capillarity. The variations ol
the latter can be significant. It was shown that capil-
lary heterogeneity acts like an exlernal body force
(such as gravity), with the additional property that it
also varies spatially. A multiplicity of steady states
similar to gravity-driven heat pipes was found for
decreasing permeabilities in horizontal counterflow
and for heal Aluxes lower than a critical value. Vapor-
dominated and liquid-dominated regimes wecre
oblained using selection rules thal were postulated to
depend on the past history (Lransient state) of the
system. The analysis was aided by an exact solution
obtained lor a special heterogeneity profile.
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In retrospect, the analogy between capillary het-
crogencily and gravity is not unexpected. In capillary-
controlled displacements in pore networks. cffects of
cither gravitly or pore size helerogeneily can both be
successlully described by the gradienl percolation
approach of ref. [16]. In terms of continuum models,
the analogy belween capillary heterogeneily and grav-
ity was noted in the concurrent flow study ol rel. [11].
In the latter case. however, the curve corresponding
Lo m(S) (which represented an augmented [ractional
flow curve) admits only onc rool. therclore Lhere was
stable attraction (o a single rool only. In rel. [11],
steady stale saturation profiles were oblained by back-
wards integration starting (rom (he oultlel end
(opposite to the flow direction), since the solution was
ill-posed and rapidly diverted if integration started
from the opposile end. In the present case of counter-
current flow, both sides can be used as slarling points
for the integration. As shown above. which end is
taken 1s decisive on the selection ol the particular
solution. This was implicitly contained also in refl.
[10].

The selection rules were next applied to determine
the sieady slale regimes in gravily-driven heat pipes in
homogencous systems. It was shown that Lhe different
regimes may ncver connecl with cach other. thus
retamning their identity as long as the system remains
in a two-phase state. The issue ol the lermination ol
the infinite two-phasc zone was ncxt analyzed. For
VD systems it was shown that lerminalion requires a
sharp increase in the permeability (in the direction of
increasing depth) somewhere in the medium. Across
this discontinuity the underlying VD slale is rapidly
converted Lo a subcooled liquid. For LD systems on
the other hand, dryoul can be reached as depth
increases by cither a sharp increase or a sharp decrease
ol permeability. The emerging picture from (op-lo-
bottom is thus. subcooled liquid—(discontinuity)-
VD-dry region or subcooled liquid—LD-(discon-
tinuity)—dry region, in the respeclive cases. This
ordering may be helpful in the interpretation of geo-
thermal syslems.

The importance of capillary helerogencity relative
Lo gravily was demonstraled in a study of two different
heterogeneity modes, a slow and a normal variation.
For permeabilities that vary slowly, the main effect is
due to gravity, and the saluralion response may [ollow
the permeability variation depending on heat flux
values. Larger variations in permeability induce sig-
nificant capillary effects. Often. capillary pressure con-
tinuily across a sharp permeabilily change may lead
to dryout or to subcooled liquid. Capillary pressure
continuity is not necessarily the only appropriate con-
dition relevant Lo a decrease in permeability. Such

effects attribute a sigmficant large scale hysleresis on
the saturation profiles.
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